
9RUWH[�ORRSV�DQG�0DMRUDQDV
6WHIDQR�&KHVL��$UWKXU�-DIIH��'DQLHO�/RVV��DQG�)DELR�/��3HGURFFKL 
 
&LWDWLRQ��-��0DWK��3K\V���������������������GRL������������������� 
9LHZ�RQOLQH��KWWS���G[�GRL�RUJ������������������ 
9LHZ�7DEOH�RI�&RQWHQWV��KWWS���MPS�DLS�RUJ�UHVRXUFH���-0$3$4�Y���L�� 
3XEOLVKHG�E\�WKH�$,3�3XEOLVKLQJ�//&� 
 
$GGLWLRQDO�LQIRUPDWLRQ�RQ�-��0DWK��3K\V�
-RXUQDO�+RPHSDJH��KWWS���MPS�DLS�RUJ� 
-RXUQDO�,QIRUPDWLRQ��KWWS���MPS�DLS�RUJ�DERXW�DERXWBWKHBMRXUQDO 
7RS�GRZQORDGV��KWWS���MPS�DLS�RUJ�IHDWXUHV�PRVWBGRZQORDGHG 
,QIRUPDWLRQ�IRU�$XWKRUV��KWWS���MPS�DLS�RUJ�DXWKRUV 

http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1536256211/x01/AIP-PT/Maplesoft_JMPCoverPg_100213/JMP_Physics_advert1640x440_maple17.jpg/6c527a6a7131454a5049734141754f37?x
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4829273?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v54/i11?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


JOURNAL OF MATHEMATICAL PHYSICS 54, 112203 (2013)

Vortex loops and Majoranas
Stefano Chesi,1,2 Arthur Jaffe,3,4,5 Daniel Loss,2,4 and Fabio L. Pedrocchi4
1Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
2CEMS, RIKEN, Wako, Saitama 351-0198, Japan
3Harvard University, Cambridge, Massachusetts 02138, USA
4Department of Physics, University of Basel, Basel, Switzerland
5Institute for Theoretical Physics, ETH Zürich, Zürich, Switzerland
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We investigate the role that vortex loops play in characterizing eigenstates of interact-
ing Majoranas. We give some general results and then focus on ladder Hamiltonian
examples as a test of further ideas. Two methods yield exact results: (i) A map-
ping of certain spin Hamiltonians to quartic interactions of Majoranas shows that
the spectra of these two examples coincide. (ii) In cases with reflection-symmetric
Hamiltonians, we use reflection positivity for Majoranas to characterize vortices
in the ground states. Two additional methods suggest wider applicability of these
results: (iii) Numerical evidence suggests similar behavior for certain systems with-
out reflection symmetry. (iv) A perturbative analysis also suggests similar behav-
ior without the assumption of reflection symmetry. C⃝ 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4829273]

I. INTRODUCTION

A. Motivation

The spin systems we study have their origin in the “compass model” introduced by Kugel and
Khomskii25 to describe the Jahn-Teller effect in magnetic insulators. This model has a rich structure,
and in a two-dimensional version, known as the honeycomb model, Kitaev found excitations with
fractional statistics.24 There is a long history of fractional-statistics excitations, now called anyons
in modern theoretical studies. These arise from braid statistics, see, for example, Refs. 41, 17, 27,
42, and 13.

In the honeycomb model (possibly with a magnetic field) both abelian and non-abelian anyons
occur for different values of the coupling constants. There has also been extensive study of “ladders”
with possibly anyonic excitations.6,37,18 Models with anyons appear of interest in current studies
of topological quantum computing. One argues that the degenerate ground-state subspace of such
systems is a good place to store and to process quantum information, see, for example, Refs. 23,
22, 1, 9, 30, 10, 38, and 35. The advantage for storage is that the subspace of ground states is
stable against a wide class of local perturbations. On the other hand, non-local perturbations (such
as braiding of anyons) may implement quantum gates.

In this context, it is important to understand the properties of the ground states, for these states are
candidates to encode quantum information. In particular, we are interested in the question whether
vortices are present or absent in the ground states, which is intimately connected to our study of
Majoranas. In particular for a large system, the location of the vortex should be independent of its
energy, and therefore labels a degeneracy. Transitions between the different ground states would be
counter-productive to storage of information.

We take advantage of the equivalence of a quartic Hamiltonian of interest, to a family of
Hamiltonians describing quadratic interactions of Majoranas. One naturally comes to the question:
which Hamiltonian within the family has the lowest ground-state energy? The answer to this question
characterizes the ground states of the original Hamiltonian. Besides being of fundamental interest
in its own right, the question of determining which Hamiltonian has minimal ground-state energy
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turns out to be related to the presence or absence of vortices, and hence to the storage of information
as outlined above. Although other methods might allow one to study the spin Hamiltonians directly,
we have not investigated that possibility.

B. Goals and results

In this paper we explore some general properties of a family of Majorana interactions on a cubic
lattice in d dimensions. We focus on the question of how to identify which Hamiltonians within the
family have minimal ground-state energy.

Our first approach is to use reflection positivity to study the ground states of a family of
Hamiltonians that are quadratic in Majoranas, H̃u =

∑
(i j) J(i j)ui j i ci c j . Here J(ij) is a constant with

sign uij = ± 1, and ci is a Majorana. Using reflection positivity for Majoranas,19 we give constraints
on which Hamiltonians H̃u have the lowest ground-state energy. We use these constraints to show
that these ground states are vortex-free. This property of vortex loops is related to results of Lieb,28

and of Macris and Nachtergaele31 for hopping Hamiltonians.
The Majorana interactions considered here arise naturally from mapping certain nearest-

neighbor quadratic interactions of quantum spin ladders H = −
∑

(i j) J(i j) σ
(i j)
i σ

(i j)
j into quartic

interactions of Majoranas H̃ = −
∑

(i j) J(i j) i b(i j)
i b(i j)

j i ci c j . We use the map H "→ H̃ defined by
σα

j "→ σ̃ α
j = ibα

j c j , for Majoranas bα
j and cj as explained in Sec. IV.

In Theorem 6 of Sec. V we show that the spectrum of an open spin ladder Hamiltonian H
coincides with the spectrum of its Majorana fermionic representation H̃ , aside from multiplicity.
While the spectrum of a closed spin ladder seems not to have this property, we conjecture that
the ground state energies are the same. On the other hand, using numerical methods we show that
the spectra are different in the case of periodic boundary conditions. In spite of the fact that in
general the eigenvalues of H and H̃ do not coincide, numerical evidence suggests that the ground-
state energies of these two Hamiltonians are the same. We use the relation between H and H̃ and
our results on H̃u to characterize the vortex configuration in the ground states of H, when H is
reflection-symmetric.

In the general case when reflection-symmetry of H is absent, we investigate the properties of the
ground-state energy using numerical methods to compute low-lying energy levels. This investigation
indicates that the ground state remains vortex free (with the relevant restriction on the sign of various
couplings) even though our mathematical proof does not apply. Based on this information, we
formulate a general vortex-free ground-state conjecture for ladders in Sec. IX. We also study spin
ladders by perturbation theory. We show that the ground state remains vortex free, and we incorporate
these insights into the conjecture in Sec. IX.

C. Organization of the paper

In Sec. II we define a family of Hamiltonians with nearest-neighbor Majorana interactions on
a cubic lattice in arbitrary dimension. In this section we assume the existence of a reflection plane
leaving the lattice invariant, and transforming the Hamiltonians in a simple way. Using reflection-
positivity one can characterize vortex loop configurations of the Hamiltonians that minimize the
ground-state energy within the given family. When all the coupling constants are positive (or
negative), the minimal-energy is achieved for a vortex-free ground state.

In Secs. III–VI we apply these results to spin ladders and their Majorana fermionic representa-
tions. While in much of this paper we analyze ladders as an example, most of our results extend in
a straightforward way to models defined on a honeycomb lattice with similar trivalent couplings at
each site.

In Sec. VII we study certain ladders numerically. These ladders do not possess the symmetry
required to use reflection-positivity arguments. Numerical evidence suggests that the ground-state
energy of a closed spin ladder coincides with the ground state energy of its fermionic representation.
Furthermore, the numerical calculations suggest that the ground states remain vortex-free (or vortex-
full) as for the spin ladders for which reflection-positivity applies.
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In Sec. VIII we use third-order perturbation theory (the lowest non-trivial order) to complement
the picture. These results also show that for certain regions of the coupling constants for non-
symmetric, open and closed ladders, the ground states are vortex-free (or vortex-full).

II. NEAREST-NEIGHBOR MAJORANA INTERACTIONS ON A CUBIC LATTICE

A. The cubic lattice

We consider a finite subset # of the cubic lattice Zd in Euclidean d-space, with an even
number |#| of sites i. We assume # to be a rectangular box, with sites i ∈ Zd and bonds (ij)
connecting nearest-neighbor sites. The side length of the box along each coordinate axis may
be different. We call this an open box. We sometimes close the box in one or more coordinate
directions. One closes the box in the kth direction by defining sites with minimum and maximum
value of the kth coordinate, but the same value of each of the other coordinates, to be nearest
neighbors.

B. The Majoranas and the Hilbert space

A set of Majoranas is a self-adjoint representation of an even-dimensional Clifford algebra,
{
ci , c j

}
= 2δi j , where c j = c∗

j = c−1
j . (2.1)

Here we assign a single Majorana cj to each site j. Majoranas can be represented on a Fock-Hilbert
space H̃c of dimension 2|#|/2 and we use this representation. We consider the family of Hamiltonians

H̃u =
∑

(i j)

J(i j) ui j i ci c j , (2.2)

with J(ij) = J(ji) ≥ 0 and uij = − uji = ± 1. In case the subscripts are difficult to distinguish, we write
J(i, j) in place of J(ij).

C. Vortex loops

Define a loop C of length |C| = ℓ as an ordered sequence of nearest-neighbor sites {i1, i2, . . . ,
iℓ, i1} in #, starting and ending at the same site. In addition, we assume i1, . . . , iℓ are distinct
so the loop is not self-intersecting. We identify the loop with a closed, directed path connecting
nearest-neighbor sites ik and ik+1 by bonds (ik ik+1). Denote −C as the reverse loop which contains
the same sites as C but the opposite orientation, {i1, iℓ, iℓ − 1, . . . , i2, i1}. Let

∏
(i j)∈C Ki j denote the

ordered product around the loop,
∏

(i j)∈C

Ki j = Ki1 i2 Ki2 i3 · · · Kiℓ−1 iℓ Kiℓ i1 . (2.3)

In the case where Kij are matrices, the starting point of the loop is important, though the trace

Tr
(∏

(i j)∈C Ki j

)
is independent of the cyclic permutation of sites in the loop. The smallest loop

contains four sites, which are the corner of a square or plaquette p bounded by the loop C = ∂p.
Define a loop to be non-degenerate if the coupling constants on the loop do not vanish

C is non-degenerate ⇔
∏

(i j)∈C

J(i j) ̸= 0 . (2.4)

Define the vortex loop B̃(C) as

B̃(C) = −
∏

(i j)∈C

ui j . (2.5)



112203-4 Chesi et al. J. Math. Phys. 54, 112203 (2013)

In case B̃(C) = 1 we say that the loop C is vortex-free. In case B̃(C) = −1 we say that C is
vortex-full. We say that a state is vortex-free or vortex-full, in case all loops C are vortex-free or
vortex-full. In case C bounds a surface, one can interpret the vortex configuration B̃(C) in terms of
flux through the surface.

D. Fermionic Fock representation

We represent the Hilbert space H̃c as a fermionic Fock space generated by |#|/2 real creation
operators a∗

µ and their adjoints aµ are the corresponding annihilation operators. Here µ = 1, . . . ,
|#|/2. Each creation-annihilation pair gives rise to two Majoranas

mµ1 = aµ + a∗
µ , and mµ2 = i

(
aµ − a∗

µ

)
. (2.6)

E. The Z2 gauge group on H̃c

It is convenient to introduce the gauge group Gc that acts on H̃c. The generators of this group
are the operators

U c
j = c j U c , where U c = i |#|/2

|#|∏

j=1

c j . (2.7)

We later choose an order for the product U c, but conjugation by U c does not depend on the choice.
The group Gc has dimension 2|#|+1.

A general gauge transformation W ∈ Gc on H̃c depends upon |#| + 1 two-valued parameters
n = {n0, n1, . . . , n|#|}. It has the form

W (n) = (−1)n0
(
U c

1

)n1
(
U c

2

)n2 · · ·
(
U c

|#|
)n|#|

, (2.8)

where nk = 0, 1. Conjugation by the unitary W (n) acts on the ck’s as an automorphism that we also
denote by W (n). We write

W (n)(ck) = W (n) ck W (n)∗ = (−1)nk ck . (2.9)

As Osterwalder and Seiler pointed out in their original study of the Wilson action on a lattice,33

when one studies reflection positivity in gauge theory, a useful technique is to perform a unitary gauge
transformation which removes the interaction terms across the reflection plane. Our Hamiltonians
have a gauge symmetry as well, which allows one to fix the sign of the interactions across the
reflection plane in our proof of Theorem 2, as was also the case in Ref. 28.

F. Reflection-symmetry

In Secs. II H, II I, and VI, we consider lattices that are symmetric under a reflection ϑ in a
hyperplane (, that intersects no lattice sites. The reflection defines two disjoint subsets of the lattice
#± of # = #− ∪#+ that map into each other,

ϑ #± = #∓ , ϑ2 = Id, with ϑ : i "→ ϑi. (2.10)

The reflection ϑ acts on loops as

ϑ(C) = ϑ({i1, i2, . . . , iℓ, i1}) = {ϑi1,ϑi2, . . . , ϑiℓ,ϑi1}. (2.11)

We say that a loop C is reflection-symmetric under the action of ϑ , if ϑ(C) = −C.
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We represent ϑ on H̃c as an anti-unitary transformation with

ϑ(c j ) = ϑ c j ϑ−1 = cϑ j . (2.12)

The transformation ϑ defines an anti-linear automorphism of the algebra generated by the cj’s, which
we also denote by ϑ .

Definition 1. The Hamiltonian H̃u is reflection-symmetric if ϑ(H̃u) = H̃u .

G. The fermionic algebra on H̃c

Define the fermionic algebra Ac as the algebra generated by the cj’s for j ∈ #. Let Aeven
c denote

the even subalgebra of Ac, generated by even monomials in the fermionic operators. Similarly, let
Ac,± ⊂ Ac denote the subalgebras generated by the cj’s with j ∈ #± . Also let Aeven

c,± denote the even
subalgebras of Ac,±.

H. Reflection positivity

Reflection positivity (RP) for Majoranas is a condition on a Hilbert space, an algebra of operators
on the Hilbert space, a reflection ϑ through a plane (, and a Hamiltonian. Here we study the Hilbert
space H̃c, the algebras Aeven

c,± , an implementation of the reflection ϑ on H̃c, and a reflection-symmetric
Hamiltonian H̃ . The RP condition states that

TrH̃c

(
B ϑ(B) e−H̃

)
! 0 , for all B ∈ Aeven

c,± . (2.13)

Time-reflection positivity was originally discovered in quantum field theory by Osterwalder and
Schrader in the context of relating classical fields with quantum fields.32 In particular they introduced
the method of “multiple reflection bounds,” involving iterated applications of a reflection-positivity
bound. Such bounds have been key for the first mathematical proof of the existence of phase
transitions (ground-state degeneracy) in quantum field theory,16 and in proving that certain field
theories have infinite volume limits.14

RP has also had many applications in the study of phase transitions for classical and quantum
spin systems on a lattice; see Fröhlich, Simon, and Spencer,11 Dyson, Lieb, and Simon,7 and
Fröhlich, Israel, Lieb, and Simon12 for more details. In the context of nearest-neighbor hopping
interactions, the vortex configuration of the ground state has been analyzed by Lieb28 and Macris
and Nachtergaele.31 Recently one has shown that RP is also valid for a class of many-body Majorana
interactions;19 this family of interactions includes the two-body H̃u in (2.2) with certain restrictions
on the coupling constants J(i j).

I. Vortex loops and reflection positivity

We study vortex loops B̃(C) in ground states of the family of Hamiltonians {H̃u} with ground
state energies {Ẽ0(u)}.

Theorem 2. Let H̃u denote a Hamiltonian of the form (2.2). Let C denote a non-degenerate,
reflection-symmetric loop with respect to a reflection ϑ in the plane (. Assume that the magnitudes of
the couplings are reflection-symmetric, J(ij) = J(ϑ i ϑ j). Then minu Ẽ0(u) is achieved for a “vortex-free”
configuration of the uij’s, namely,

B̃(C) = 1. (2.14)

Proof. Consider a loop C of length 2L symmetrically crossed by the hyper-plane (. This means
that #± ∩ C each contain L sites. Relabel the sites of C as 1, . . . , 2L so that the bonds in order on
C ∩ #− are (i i + 1) with i = 1, . . . , L − 1. Similarly on C ∩ #+ the bonds are (i i + 1) with i =
L + 1, . . . , 2L − 1. Choose the starting point of C so that the bonds cutting ( are (2L, 1) and (L, L
+ 1).
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Define #( ± ⊂#± as those sites in #± that border (. Decompose H̃u = H̃u,− + H̃u,0 + H̃u,+
where H̃u,± ∈ A± and

H̃u,0 =
∑

i

J(i ϑ i) ui ϑ i iciϑ(ci ) , with i ∈ #( − . (2.15)

Perform a gauge transformation W (n) ∈ Gc of the form (2.8), with ni = 0 except for i ∈ #( − .
Choose ni to ensure that the interactions in ˜̃H u,0 = W (n) H̃u,0 W (n)∗ across ( are positive, namely,

J(i ϑ i) ui ϑ i (−1)ni > 0 , for i ∈ #( − . (2.16)

Also define the Hamiltonians ˜̃H u,1 and ˜̃H u,2 as

˜̃H u,1 = ˜̃H u,− + ˜̃H u,0 + ϑ(˜̃H u,−) , and ˜̃H u,2 = ϑ(˜̃H u,+) + ˜̃H u,0 + ˜̃H u,+, (2.17)

where

˜̃H u,− = W (n) H̃u,− W (n)∗ , and ˜̃H u,+ = W (n) H̃u,+ W (n)∗ . (2.18)

Since ϑ(˜̃H u,0) = ˜̃H u,0, the Hamiltonians ˜̃H u,1 and ˜̃H u,2 are reflection-symmetric,

ϑ(˜̃H u,1) = ˜̃H u,1 , and ϑ(˜̃H u,2) = ˜̃H u,2. (2.19)

Furthermore, the coupling constants in ˜̃H u,0 that cross the reflection plane ( are positive.
The Hamiltonians ˜̃H u,1 and ˜̃H u,2 satisfy the hypothesis of Theorem 3 in Ref. 19. In that paper

one studies reflection positivity for a class of interacting Majorana systems including the present
one satisfying (2.16) and (2.19). From this result one concludes the reflection-positivity conditions.
For B ∈ Aeven

± ,

TrH̃c

(
B ϑ(B) e−˜̃H u,1

)
! 0 , and TrH̃c

(
B ϑ(B) e−˜̃H u,2

)
! 0. (2.20)

A direct consequence of the reflection-positivity conditions (2.20) is the reflection-positivity bound
for any β ≥ 0,

TrH̃c
e−β ˜̃H u "

(
TrH̃c

e−β ˜̃H u,1

)1/2 (
TrH̃c

e−β ˜̃H u,2

)1/2
. (2.21)

This bound is a special case of the reflection-positivity inequality for interacting Majorana systems
proved in Proposition 8 of Ref. 19. The reflection-positivity bound (2.21) allows one to establish
an inequality on the ground state energy ˜̃E0(u) of the Hamiltonian ˜̃H u in terms of the ground-state
energies ˜̃E0(u, 1) and ˜̃E0(u, 2) of the Hamiltonians ˜̃H u,1 and ˜̃H u,2, namely,

0 ! ˜̃E0(u) !
˜̃E0(u, 1) + ˜̃E0(u, 2)

2
. (2.22)

Taking β large in (2.21) proves (2.22).
Conjugation by the gauge transformation W (n) does not change the ground state energy Ẽ0(u)

of H̃u , so ˜̃E0(u) = Ẽ0(u). Nor does conjugation by the gauge transformation W (n) change the value
of any vortex loop B̃(C). Thus, minu Ẽ0(u) is obtained for some configuration u = u0 that is both
reflection-symmetric and has positive interactions across (. Call this Hamiltonian H̃u0 .

Let H̃u0 (C) denote the Hamiltonian that is the restriction of H̃u0 to bonds (i j) ∈ C. Decompose
H̃u0 (C) as

H̃u0 (C) = H̃u0,−(C) + H̃u0,0(C) + H̃u0,+(C), (2.23)
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where

H̃u0,−(C) =
L−1∑

i=1

J(i, i+1) ui i+1 i ci ci+1,

H̃u0,+(C) =
2L−1∑

i=L+1

J(i, i+1) ui i+1 i ci ci+1, (2.24)

H̃u0,0(C) = J(1, 2L) u1 2L i c1 ϑ(c1) + J(L , L+1) uL L+1 i cL ϑ(cL ).

With our chosen representation

J(1, 2L) u1 2L > 0 , and J(L , L+1) uL L+1 > 0, (2.25)

and also reflection-symmetry ϑ(H̃u0,−(C)) = H̃u0,+(C) yields for i = 1, . . . , L − 1,

J(i, i+1) ui i+1i c2L−i c2L−i+1

= J(2L−i, 2L−i+1) u2L−i 2L−i+1 i c2L−i c2L−i+1. (2.26)

Consequently, since the loop C is non-degenerate, for i = 1, . . . , L − 1 one has

J(i, i+1) J(2L−i, 2L−i+1) ui i+1 u2L−i 2L−i+1 > 0. (2.27)

Multiply together conditions (2.25) with all the conditions (2.27), and identify site 2L + 1 with
site 1. One obtains

B̃(C) = −
∏

(i j)∈C

ui j = −
2L∏

i=1

ui i+1 = sgn

(
2L∏

i=1

J(i, i+1)

)

= 1. (2.28)

The first two equalities and the last equality in (2.28) are definitions, so one only needs to verify
the third equality. There is one additional minus sign, which comes from u1 2L = − u2L 1, with the
former appearing in (2.25) and the later in the product

∏2L
i=1 ui i+1. This minus sign cancels the

explicit minus sign in (2.28). !

III. QUANTUM SPIN LADDERS

One way to realize the family of Hamiltonians H̃u defined in (2.2) is to study nearest-neighbor
spin interactions on a trivalent lattice. We consider the simplest example, the quantum spin ladder,
corresponding to the case d = 2 in Sec. II.

A. Even spin ladders

An open, even spin ladder is a 2 × 2N square lattice array. The sites of the lattice are connected
by bonds linking nearest-neighbor sites. We call one given plaquette the unit cell of the ladder. One
obtains the lattice of the ladder as a union of N translates of the unit cell by integer multiples of
twice the side-length of the unit cell, along one of its coordinate axes (which we choose horizontal).
One completes the ladder with bonds (ij) that link site i with a nearest-neighbor site j.

We illustrate such a ladder in Fig. 1, where we label the plaquettes, vertices, and bonds. Divide
the 2N − 1 plaquettes of the ladder into two sets: the first set comprises N fundamental plaquettes
p1, p3, . . . , p2k−1, . . . , p2N−1 that are the translates of the unit cell that generates the ladder. The
other set contains (N − 1) connecting plaquettes p2, p4, . . . , p2k, . . . , p2N−2, each of which links
two fundamental plaquettes, by sharing two of its bonds with two different fundamental plaquettes.

In order to discuss both “open” and “closed” ladders in a unified way, we introduce one
additional connecting plaquette p2N linking p2N−1 with p1, and two additional bonds to the open
ladder, connecting the site 4N to the site 1, and connecting the site 4N − 1 to the site 2. The closed
ladder corresponds to periodic boundary conditions. Another way to characterize a closed ladder, is
the property that one must remove at least four bonds to divide it into two disconnected pieces.
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Wnfundamental plaquette connecting plaquette Xj

FIG. 1. Ladder.

Label the sites in the fundamental plaquette p2n − 1 clockwise, starting in the lower-left corner,
by 4n − 3, 4n − 2, 4n − 1, 4n. As a consequence, the sites in the connecting plaquette p2j are
labeled clockwise by 4j, 4j − 1, 4j + 2, 4j + 1. The open ladders we consider have (6N − 2)
bonds, which we divide into three types. There are (2N − 1) type-x bonds, (2N − 1) type-y bonds,
and 2N type-z bonds. All the vertical bonds will be type-z bonds. The horizontal bonds on top of
each fundamental plaquette, and on the bottom of each connecting plaquette are type-x bonds. The
remaining bonds are type-y bonds.

1. The Hamiltonian

The models we study here and other similar models arise frequently in the study of topological
quantum information theory, see, for instance, Refs. 8, 34, 3, 39, 26, 6, 37, 18, and 29. The spins
at each site σ⃗i = (σ x

i , σ
y

i , σ z
i ) are Pauli matrices. Here i denotes the lattice site (using the labels

above), and x, y, z denotes the three Pauli matrices. The Hamiltonian we study is a nearest-neighbor
quadratic interaction of the form

H = −
∑

(i j)

J(i j) σ
(i j)
i σ

(i j)
j , J(i j) = J( j i) real. (3.1)

Here the sum over (ij) denotes a sum over unoriented bonds (ij) between nearest neighbor lattice
sites in the ladder. Also σ

(i j)
i equals σ x

i , σ
y

i , or σ z
i , according to whether the bond (ij) is type-x,

type-y, or type-z, respectively, as defined above; thus the couplings labeled by a bond depends only
on products of the same components of σ⃗ at different sites.

A simple case of this Hamiltonian which we call homogeneous couplings is the case for which
every type-x bond has coupling Jx, every type-y bond has coupling Jy, and every type-z bond has
coupling Jz. The open ladder Hamiltonian corresponds to taking the two coupling constants closing
the ladder equal to zero, namely, J(4N,1) = J(4N − 1,2) = 0.

B. Vortex loops

For each loop C, we assign a vortex-loop operator (or simply a vortex) B(C). This is proportional
to the ordered product along the loop of terms in the interaction. Recall that σ

(i j)
i σ

(i j)
j is the term in

the Hamiltonian (3.1) on the bond (ij). Define

B(C) = i |C|+2
∏

(i j)∈C

(
σ

(i j)
i σ

(i j)
j

)
, (3.2)

similar to (5) and (6) in Kitaev.24 As σ
(i j)
i is self-adjoint with square I, we infer that B(C) is unitary.

We devote the rest of this paper to the study of properties of the operators B(C).

IV. FERMIONIC LADDERS

A. Mapping of spins to fermions

We use a representation of the Pauli matrices as quadratic expressions in Majoranas. Choose
four Majoranas at each lattice site j and denote them bx

j , by
j , bz

j , and cj. Define the algebra A as the
algebra generated by the bx,y,z

j and cj for j ∈ #. Let Aeven denote the even subalgebra of A, generated
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by even monomials in the fermionic operators. One defines for the single site j,

σ̃ α
j = ibα

j c j , (4.1)

as in the usual construction of boost operators for the Dirac equation, see, for example, Sec. IV C
of Ref. 40. For a single chiral component of the spin-1/2 Dirac wave function, the boost generator
is isomorphic to the spin.

Denote the vector space of the four Majoranas as H̃ j . In order to project onto a single chiral
component, one restricts to the eigenspace + 1 of the self-adjoint matrix γ 5

j = bx
j by

j bz
j c j with square

one. On the full Hilbert space H̃ these γ 5
j ’s mutually commute and commute with each σ̃

x,y,z
j . The

corresponding orthogonal projection onto the + 1 eigenspace is P =
∏

j Pj =
∏

j
1
2

(
I + γ 5

j

)
, and

it yields H = PH̃ of dimension 24N. The σα
j = Pj σ̃ α

j Pj ’s satisfy the correct multiplication laws
for spin matrices on H. We call H the spin-ladder Hilbert space.

B. Representation of the Hamiltonian

Introduce the three skew 4N × 4N matrices u, A, and C with entries that are hermitian operators,

ui j = −u ji = u∗
i j , Ai j = −A ji = A∗

i j , and Ci j = −C ji = C∗
i j . (4.2)

We define these matrix elements to vanish unless i, j are nearest-neighbors. In this case

ui j = ib(i j)
i b(i j)

j , Ci j = ici c j , and Ai j = J(i j) ui j , (4.3)

with J(ij) = J(ji) real. A representation of the spin-ladder Hamiltonian on the fermionic Hilbert space
is

H̃ =
∑

(i j)

Ai j Ci j =
∑

(i j)

J(i j) ui j i ci c j = H̃∗. (4.4)

The uij operators mutually commute, and they also commute with the Hamiltonian H̃ . They
satisfy u2

i j = +1, so the eigenvalues of uij are ± 1. Also all the γ 5
j commute with H̃ . Furthermore

the Hamiltonian H̃ commutes with P, so it maps the subspace H into itself and on this subspace the
Hamiltonian has the representation as a sum of self-adjoint operators,

H = P H̃ P =
∑

(i j)

P Ai j Ci j P. (4.5)

The properties of H̃ on H̃ are different from those of H on H, and in particular the eigenvalues might
differ (aside from multiplicity). One should be careful not to jump to conclusions; see Sec. VII and
also Ref. 36.

C. Representation of the vortices

A fermionic representation B̃(C) of B(C) commutes with the projection P. Its projection
P B̃(C) P , agrees with the original definition (3.2) of the vortex B(C). We give such a fermionic
representation B̃(C), similar to Ref. 24 and observe that the spin vortices B(C) are mutually
commuting, conserved quantities.

Proposition 3. A fermionic representation of the vortex-loop operator is given in terms of the
mutually-commuting operators uij as

B̃(C) = −
∏

(i j)∈C

ui j . (4.6)

Each γ 5
k commutes with B̃(C), namely,

[
B̃(C), γ 5

k

]
= 0. (4.7)
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Proof. The contribution to the vortex-loop operator B(C) from the spins at site ij, for j ̸= 1,
is σ

(i j−1 i j )
i j

σ
(i j i j+1)
i j

. (In case j = ℓ, set ℓ + 1 = 1.) This product has the fermionic representation

−b(i j−1 i j )
i j

c j b(i j i j+1)
i j

c j = b(i j−1 i j )
i j

b(i j i j+1)
i j

. Taking the product of these representations and adding the
contribution from the spins at site i1, one has a fermionic representation for B(C) defined in (3.2)
equal to

B̃(C) = −i |C|+2 b(i1 i2)
i1

ci1 b(i1 i2)
i2

b(i2 i3)
i2

b(i2 i3)
i3

b(i3 i4)
i3

· · ·

b(iℓ−2 iℓ−1)
iℓ−1

b(iℓ−1 iℓ)
iℓ−1

b(iℓ−1 iℓ)
iℓ b(iℓ i1)

iℓ b(iℓ i1)
i1

ci1

= i |C|+2 ci1 b(i1 i2)
i1

b(i1 i2)
i2

b(i2 i3)
i2

b(i2 i3)
i3

b(i3 i4)
i3

· · ·

b(iℓ−2 iℓ−1)
iℓ−1

b(iℓ−1 iℓ)
iℓ−1

b(iℓ−1 iℓ)
iℓ b(iℓ i1)

iℓ b(iℓ i1)
i1

ci1

= −ci1 ui1i2 ui2i3 · · · uiℓ−1iℓ uiℓi1 ci1

= −ui1i2 ui2i3 · · · uiℓ−1iℓ uiℓi1 . (4.8)

In the last equality we use the fact that ci1 commutes with all the uij’s. This establishes the fermionic
representation (4.6). As each uij is hermitian and the uij mutually commute, we infer that B̃(C) is
hermitian. Since B̃(C) is a product of b Majoranas, with an even number of b’s at each site i j ∈ C,
we infer that B̃(C) commutes with each γ 5

j . Therefore B̃(C) commutes with P. !

From the representation (4.6) for B̃(C) and the representation (4.4) for H̃ in terms of the mutually
commuting, self-adjoint operators uij with square one, one infers the following two corollaries:

Corollary 4. The fermionic vortex representatives B̃(C) are all self-adjoint and have eigenvalues
± 1. Different B̃(C) mutually commute,

[
B̃(C), B̃(C′)

]
= 0. (4.9)

All the B̃(C) are conserved by H̃ , namely,
[
B̃(C), H̃

]
= 0. (4.10)

Corollary 5. The vortex-loop operators B(C) are self-adjoint on H, and have eigenvalues ± 1.
Different B(C) mutually commute,

[
B(C),B(C′)

]
= 0. (4.11)

The vortex-loop operators are all conserved, namely,

[B(C), H ] = 0. (4.12)

D. The reduced fermionic Hamiltonians

Define H̃u as the Hamiltonian H̃ restricted to an eigenspace of the uij’s. Therefore, it is useful
to represent the Hilbert space H̃ in the form of a tensor product

H̃ = H̃u ⊗ H̃c . (4.13)

Here we consider the 6N mutually commuting variables uij corresponding to the products of ib(i j)
i b(i j)

j
on the 6N bonds of a closed ladder. In the case of an open ladder the couplings on the two extra
bonds (1, 4N) and (2, 4N − 1) are zero. Each uij is self-adjoint and has square equal to one, so it can
be represented on a two-dimensional Hilbert space. Therefore the Hilbert space H̃u has dimension
26N, which is exactly 2#b/2, where #b equals the total number of bx, y, z Majoranas. These Majoranas
can be represented on a Hilbert space of the same dimension 26N.
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Define the fermionic algebra Ac as the subalgebra of A generated by the cj-Majoranas. Since
this algebra commutes with all the uij’s, it acts as I ⊗ Ac on H̃ = H̃u ⊗ H̃c.

V. EIGENVALUES OF H̃ AND OF H

Let Ẽ0 denote the ground-state energy of H̃ given in (4.4), and let E0 denote the ground-state
energy of H. We are interested to know when these two ground state energies coincide. By the
variational principle, there is a normalized vector +̃ ∈ H̃, such that

Ẽ0 = ⟨+̃, H̃+̃⟩ = inf
∥χ̃∥=1

⟨χ̃ , H̃ χ̃⟩ ≤ E0.

One obtains E0 by restricting χ̃ to the range of P. So if P+̃ = +̃, then Ẽ0 = E0. More generally,
we investigate the eigenvalues of H̃ , and determine in certain cases that they are the same as the
eigenvalues of H. In other cases there is evidence that they are different.

For an open ladder, we prove in Theorem 6 that H̃ and H have the same eigenvalues. We analyze
the ground states of H using the fermionic representation and demonstrate that the ground states
are vortex-free. In reflection symmetric cases we do this in Sec. VI A using reflection positivity. In
Sec. VIII we analyze some non-reflection symmetric cases using perturbation theory.

In Proposition 7 we explain why the proof of Theorem 6 for the open ladder does not apply to
the closed ladder. More to the point, numerical calculation shows that the spectra are really different,
see the discussion in Sec. VII and in particular in Sec. VII B.

Theorem 6. Consider an open ladder. The eigenvalues of H defined in (3.1) are the same as
those of H̃ defined in (4.4), aside from multiplicity.

Proof. The operators γ 5
i mutually commute and commute with H̃ , so we can simultaneously

diagonalize them. We find an operator Qj with square ± 1, which anti-commutes with γ 5
j and

commutes with H̃ and γ 5
i , for i ̸= j. Let +̃ be a simultaneous eigenstate of the γ 5

i and H̃ with
eigenvalues (µi, Ẽ), where µi = ± 1 are the eigenvalues of the γ 5

i . Then the vector Q j +̃ is an
eigenstate with the same eigenvalues except for the one µi with i = j, that has the opposite sign.
(Note Q j +̃ ̸= 0, as Q2

j = ±1.) By applying Qj for each negative µj, we obtain a simultaneous
eigenstate with energy Ẽ , and with all the µi = + 1. Calling this vector +̃′, the projected state
P+̃′ = +′ is an eigenstate of H with eigenvalue Ẽ . This also shows that to each eigenvalue E of H
is associated 24N eigenvalues of H̃ , of which all but one of the corresponding eigenvectors project
to zero.

Define the operator Qj by considering a non-self-intersecting path - through the ladder from
site j to site 4N. The operator Qj equals the product of the ui ′ j ′ operators along the bonds (i′j′) on
this path, followed by bx

4N . This Qj is a product of b operators and factors of i, so its square is ± 1.
The operator bx

4N does not enter the expression (4.4) for H̃ , and each term in H̃ is a product of an
even number of other fermion operators. Therefore Qj commutes with H̃ .

To complete the proof, we need to verify the relations Q jγ
5
i = ±γ 5

i Q j stated above. Consider
four cases: first suppose the path - does not pass through i. Then γ 5

i commutes with each b belonging
to Qj, so it commutes with Qj.

Second suppose that i is a site on the path -, but i ̸= j and i ̸= 4N. In this case the site i contributes
a product of two different bi operators to Qj; this is the case, because in the ladders we consider, the
three bonds ending at site i are of three different types, and the path - contains two of these bonds.
Each of these two bi’s anti-commutes with γ 5

i , so their product commutes. Also γ 5
i commutes with

bk’s at other sites, so it commutes with Qj.
The third case is i = 4N. As before, γ 5

4N commutes with the b’s at sites different from 4N. Only
one bond in - ends at site 4N, so only one b4N at site 4N arises from the path; for our ladders, this
must be either by

4N or bz
4N . But Qj also includes the extra bx

4N . So γ 5
4N anti-commutes with this extra

bx
4N and therefore commutes with the product of the two distinct b4N’s that occur in Qj.

The fourth case is i = j. In this case only one bond in - enters site i, so only one bi occurs
in Qj. Hence γ 5

j anti-commutes with the bj’s in Qj. As γ 5
j commutes with the b’s at other sites, γ 5

j
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anti-commutes with Qj. These cases cover all possibilities, so we have established all the desired
properties of the operators Qj. !

We remark that an alternate proof could be based on the explicit form of the projection P :
H̃ → H as a function of the variables uij derived in Appendix A of Ref. 36. We now show that the
proof of Theorem 6 does not extend in a straightforward way to the closed ladder. This is in line
with the numerical calculations we perform in Sec. VII suggesting that the spectrum of H is different
from the spectrum of H̃ for the closed ladder.

Proposition 7. Consider a closed ladder Hamiltonian H̃ of the form (4.4) with all couplings J(ij)

different from 0. There is no non-zero monomial Qj in the b’s and c’s that anti-commutes with γ 5
j

and commutes with H̃ and γ 5
k for k ̸= j.

Proof. Each site k in the ladder gives rise to a 4-dimensional Hilbert space H̃k . There are 16
linearly independent operators on H̃k , and this space is spanned by monomials Mα

k in the bx,y,z
k or ck

of degree 4 or less. Of these, four monomials that we denote m1,...,4
k are the Majoranas themselves and

have degree 1, and four others m1,...,4
k γ 5

k have degree 3. We write these eight odd degree monomials
as M−,α

k . Each M−,α
j anti-commutes with γ 5

j and commutes with γ 5
k for k ̸= j.

There are eight monomials M+,α
k of degree 0, 2, or 4, and these commute with all the γ 5

j . All 16
of the M±,α

k commute with γ 5
k ′ for k′ ̸= k. The monomials in the b’s and c’s are linearly independent

and span the operators on H̃, as shown in Proposition 1 of Ref. 19. From these properties, we infer
that

Q j = ± M−,α
j

∏

k ̸= j

M+,αk
k . (5.1)

We now consider further restrictions on Qj, imposed by the fact that one wants
[
Q j , H̃

]
= 0.

We show this is impossible for Qj of form (5.1). These restrictions use the assumption that all J(ij) ̸=
0, so they do not apply in the case of an open ladder.

Let us denote the interaction on bond (ji) by ⟨ji⟩, so the Hamiltonian (4.4) can be written

H̃ =
∑

( j i)

⟨ j i⟩, where ⟨ j i⟩ = J( j i) u ji ic j ci = −J( j i) b( j i)
j b( j i)

i c j ci . (5.2)

We claim that

I. M−,α
j anti-commutes with either one or three terms in the sum (5.2).

II.
∏

k ̸= j M+,αk
k anti-commutes with an even number of terms in (5.2).

These two properties show that Qj of the form (5.1) cannot commute with H̃ .
In order to establish property (I), notice that a single Majorana cj anti-commutes with three

terms ⟨ji⟩ in the sum (5.2), where i are the three nearest neighbors to j. Also the Majorana bx,y,z
j anti-

commutes with one such term. As γ 5
j commutes with ⟨ji⟩, the same anti-commutativity properties

hold for m1,...,4
j γ 5

j as for m1,...,4
j .

Property (II) also follows by considering the anti-commutation properties of the eight possible
M+,αk

k . The identity and monomial of degree 4 commute with each ⟨ji⟩. The monomials M+,αk
k of

degree 2 all anti-commmute with two of the ⟨ji⟩’s. The statement then follows. !

VI. LADDER HAMILTONIANS AND REFLECTIONS

In the following we consider ladder Hamiltonians H̃ of the form (4.4) with reflection-symmetric
absolute value of the couplings J(ij), namely,

∣∣J(ϑ i ϑ j)
∣∣ =

∣∣J(i j)
∣∣ . (6.1)

We determine the value of reflection-symmetric vortex loops in the ground states of H̃ and H for
such couplings.
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p2jp2n−1

J(4n−3 4n)

J(ϑ(4n−3) ϑ4n)

J(4j 4j+1)

J(ϑ4j ϑ(4j+1))

FIG. 2. Case I: Horizontal reflection plane for an open or closed ladder.

The open or closed ladder in Fig. 1 can satisfy (6.1) in three cases:
Case I. Reflection through a horizontal plane, see Fig. 2. We make no restriction on the

couplings J(i i + 1) on vertical bonds.
Case II. Vertical reflection plane bisecting an open ladder, see Fig. 3.
Case III. Reflection through any vertical plane bisecting a closed ladder, see Fig. 4. The

dotted reflection plane intersects the ladder twice.

A. Vortex loops and reflection-symmetric ladders

In this section we apply Theorem 2 to characterize the vortex configurations of the ground states
of H̃ , for ladders satisfying conditions (6.1).

Theorem 8. Let H̃ denote a fermionic ladder Hamiltonian of the form (4.4) satisfying condition
(6.1) with respect to a reflection ϑ and a reflection plane (. Let C denote a non-degenerate,
reflection-symmetric loop. Then the vortex configuration of C in the ground state of H̃ is

B̃(C) = sgn

⎛

⎝
∏

(i j)∈C

J(i j)

⎞

⎠ . (6.2)

In case the couplings have all the same sign, then B̃(C) = +1 and the loop C is vortex-free.

Corollary 9 (Vortex-free ladders). For closed ladders with homogeneous couplings which all
have the same sign, every loop C is vortex-free in the ground state of H̃ .

Proof. Each Hamiltonian H̃ acting on H̃ corresponds to 26N Hamiltonians H̃u acting on H̃c, some
of which could be the same. Each H̃u arises from a particular choice of uij = ± 1. The eigenvalues
of H̃ are the union of the eigenvalues of these 26N Hamiltonians H̃u . A gauge transformation of the
variables bx,y,z

j transforms one H̃u into another H̃u′ .
Each Hamiltonian H̃u is of the form (2.2), although the couplings J(ij) may not be positive. In

case all the J(ij) > 0, we infer from Theorem 2 that the minimum energy of H̃ is achieved for a H̃u

J(ij)

J(i′j′)

J
(i

′′
j
′′
)

J(ϑi ϑj)

J(ϑi′ ϑj′)

J
(ϑ

i′
′
ϑ

j′
′ )

FIG. 3. Case II: Vertical reflection plane. Recall that J(ij) = J(ji).
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J(4n−3 4n)

J(4n−1 4n+2)

J(4n 4n+1) J(4n+2 4n+4)

J(4n+2 4n+3)J(4n−2 4n−1)
J(ϑ(4n+3) ϑ(4n+2)) J(ϑ(4n+2) ϑ(4n−1))

FIG. 4. Case III: Vertical reflection of a closed ladder.

with a configuration of the uij’s such that

B̃(C) = −
∏

(i j)∈C

ui j = 1 , (6.3)

for any loop C that is reflection-symmetric. Changing the sign of J(ij) with (i j) ∈ C is equivalent to
changing the sign of the corresponding uij, so one infers from (6.3) that

B̃(C) = −
∏

(i j)∈C

ui j = sgn

⎛

⎝
∏

(i j)∈C

J(i j)

⎞

⎠ . (6.4)

This completes the proof of the proposition. The corollary follows as every plaquette in the ladder
is reflection-symmetric and hence vortex-free, and the same then follows for the loop C. !

B. Implications for reflection-symmetric spin ladders

For open ladders, we know that the ground-state energies of H̃ and H agree, as shown in Theorem
6. We also know that the projection P commutes with all the vortex operators, see Proposition 3. On
the other hand, in the case of a closed ladder we do not know whether the spectra coincide, and in
particular whether the ground-state energies are the same. We have shown the following:

Theorem 10. The ground states of the Hamiltonian H for an open spin ladder satisfying
condition (6.1) with respect to a reflection plane ( has the vortex configuration

B(C) = sgn

⎛

⎝
∏

(i j)∈C

J(i j)

⎞

⎠ , (6.5)

in each non-degenerate, reflection-symmetric loop C that crosses (. In case the couplings have all
the same sign, the ground-state is vortex-free in those loops.

VII. NUMERICAL EVIDENCE

In this section we give some numerical evidence for the spectral properties of H and H̃ , both in
the case of open and of closed ladders. We have shown in Theorem 6 that the spectra of H and H̃ are
identical for an open ladder. However, this is not true for a closed ladder. Even a simple closed ladder
with N = 2 (four plaquettes) shows by explicit numerical diagonalization that H̃ has eigenvalues not
present in the spectrum of H, see Sec. VII B. For this Hamiltonian, we plot the energies and show
the vortex configurations for a number of eigenvalues.

We inspect the low-lying spectrum of the Hamiltonians H and H̃ for a number of ladders of
length N, in case that N is as large as 100, so with up to 400 spins and 1600 Majoranas. We use
Mathematica 8.0.4.0 and Matlab 7.10.0.499 (R2010a). In order to find which eigenvalues of H̃ are
eigenvalues of H, we use the method introduced in Ref. 36.
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Jz = 2

Eigenvalues Ek of H

vortex on p3

vortex on p2

vortices on p2 and p3

vortex on p1

Eigenvalues Ek of H

p1 p2 p3

Ek

Jy/2

FIG. 5. Low-lying eigenvalues of H and H̃ for an open ladder with the illustrated couplings. We plot eigenvalues of H with
circles and those of H̃ with squares, and we ignore multiplicities. Other couplings yield qualitatively similar plots.

Our numerical analysis suggests that the ground state of H̃ and also the ground state of H is
vortex free, whether or not they have the symmetry (6.1), leading to the conjecture in Sec. IX.

A. Open ladders

We first analyze an open ladder with N = 2 (three plaquettes). In Fig. 5 we plot the low-lying
eigenvalues of both H and H̃ . We have chosen the couplings Jz = 2, and the x and y couplings to
decrease from left to right on the top of the ladder, but not on the bottom. These couplings are neither
reflection-symmetric nor homogeneous. The plaquettes are labeled pn with n = 1, 2, 3 from left to
right as illustrated in Fig. 5. The numerical eigenvalues of H and H̃ agree, as we already have shown
in Theorem 6. It is interesting that the one-vortex configurations yield the first excited states (aside
from multiplicity) and the placement on the ladder of the vortex that creates the minimal-energy
excitation corresponds to the configuration of coupling constants that one intuitively expects.

1. Hamiltonians for open ladders of length N

Next we consider a sequence of Hamiltonians H̃ for open ladders with variable length N. We
choose non-homogeneous couplings that decay on the upper rungs of the ladder from 2Jx and 3Jy/2
on the left, to Jx + Jx/(2N − 1) and Jy + Jy/(2N − 2) on the right. On the bottom rungs we take
homogeneous couplings. We plot the case Jx = 1, Jy = 0.2, and Jz = 2, as illustrated in Fig. 6. We
find that the ground-state energy corresponds to a vortex-free configuration. We then consider the
minimal energy excitation above the ground state (neglecting multiplicity).

Among the configurations we have tested, the minimal energy excitation above the vortex-free
configuration appears to occur with a single vortex on a plaquette p2N−j for small j. The effect of
the boundary of the ladder at plaquette p2N−1 seems to raise slightly the energy of the single vortex
in that plaquette, as illustrated in two curves labeled by p2N−2 and p2N−1. We have computed other
single-vortex excitations that confirm this picture.

We also plot the excitation energy of a configuration with two vortices on plaquettes p2N−2 and
p2N−1. This is approximately twice the energy of a single vortex.
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FIG. 6. We plot the lowest energies of excitation for an open ladder of length N, with a vortex on plaquette p2N−2, on plaquette
p2N−1, or on both. The choice of the couplings is shown in the figure, and the vortex configurations are explained in the text.

B. Closed ladders

We present numerical evidence for several closed ladders, and contrast the results with the
case of the open ladders. In spite of the fact that we observe numerically that H̃ and H have
different spectra, the ground-state energy of H̃ coincides with the ground-state energy of H and the
ground-state vortex-loop configuration is vortex-free.

1. Hamiltonians H̃ and H for closed ladders of length N = 2

We first analyze the N = 2 ladder with couplings of the same sort as in Fig. 5, but with
non-zero couplings on the bonds closing the ladder, as illustrated in Fig. 7. We plot the low-lying
eigenvalues of H and H̃ , aside from multiplicity. We label the eigenvalues we plot by their vortex-loop
configuration.

2. Hamiltonians H̃ and H for closed ladders of length N

Here we consider the two smallest excitations above the ground state of the Hamiltonians H̃
and H for ladders of variable length 2 ≤ N ≤ 100. We choose non-homogeneous couplings that
decay on the upper rungs of the ladder from 2Jx and 3Jy/2 on the left, to Jx + Jx/(2N − 1) and Jy

+ Jy/(2N) on the right. On the bottom rungs we take homogeneous couplings. We plot the case Jx

= 1, Jy = 0.2, and Jz = 2. See Fig. 8.
We find that the lowest energy of the configurations we tested is a zero-vortex state. We redefine

this energy to be zero. However, we also find that the energy for the state with lowest energy and
having a vortex in the big loop, decays rapidly with N. We plot the energy .Ẽ (relative to the
vortex-free state) for one vortex in the big loop (BL), two vortices in the big loop and on plaquette
p2N (BL + p2N), and finally three vortices in the big loop, on p2N−1 and p2N (BL + p2N−1 + p2N).
The configurations BL and BL + p2N appear to be the lowest-energy excitations of H̃ . By computing
the eigenvalues of H, we find that the minimal-energy configuration is vortex-free, and the eigenvalue
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FIG. 7. Low-lying eigenvalues of H and H̃ for an N = 2 closed ladder without symmetry. Here H̃ has eigenvalues that do
not occur in H. We refer to the “big loop” as a loop with four horizontal bonds (around either the top or the bottom of the
ladder). As in Fig. 5 we ignore multiplicities.

equals the ground-state energy of H̃ . However, the lowest-energy excitations of H appear to arise
from the vortex-loop configurations BL and BL + p2N−1 + p2N.

3. Remark

We have performed numerical calculations for different ladder lengths and coupling configura-
tions that we do not show here, but they all result in similar behavior.

N

∆
E

Jx Jy

Jx = 1

Jy = 0.2
Jz = 2

p1 p2 p3 p4 p5p2N p6

Jy+Jy/2 Jy+Jy/4 Jy+Jy/6Jx+Jx/1 Jx+Jx/3 Jx+Jx/5

BL

BL+p2N

BL+p2N−1+p2N
H and H

H

H and H

Jy+Jy/2N

Jx Jy Jx Jy Jx

FIG. 8. Excitation energies for closed ladders of length N compared with the vortex-free configuration. The choice of the
couplings is shown in the figure, and the vortex configurations are explained in the text.
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VIII. PERTURBATIVE RESULTS WITHOUT REFLECTION SYMMETRY

In Secs. VI A and VI B we found that ladders satisfying (6.1) and all positive couplings (or all
negative couplings) have ground states with no vortex in any reflection-symmetric loop C. It is of
interest to understand whether the vortex-free property extends to open and closed ladders that do
not satisfy (6.1). Here we investigate this question by perturbation theory, and find evidence that
certain ladders have vortex-free ground-state configurations.

We study ladders for which the x-couplings are all equal to Jx, but for which

Jx ≫ J(i, i+3), J(i, i+1) ! 0. (8.1)

For homogeneous couplings with Jz ≫ |Jx|, |Jy|, the ground state of the open ladder in lowest-order
perturbation theory (depending upon N) has been shown to be vortex-free when Jx Jy > 0, and
vortex-full when Jx Jy < 0.6 Qualitatively this situation is different from the one we study here,
as our perturbation satisfying (8.1) gives a vortex contribution to the energy only in third order
perturbation theory, rather than in second order. On the other hand, the perturbation theory evidence
in Ref. 6 that the ground state is vortex-free or vortex-full agrees with Conjecture 13 in Sec. IX.

Write the Hamiltonian as

H = H0 + V, (8.2)

where

H0 = −Jx

∑

(i j)x

σ x
i σ x

j , and V = −
∑

(i j)y

J(i j) σ
y

i σ
y
j −

∑

(i j)z

J(i j) σ
z
i σ z

j , (8.3)

where (ij)x, y, z denotes type-x, y, z bonds. We consider perturbations of H0 by V . In the case of the
open ladder, σ 1 and σ 4N do not occur in H0.

Proposition 11 (Open ladder). Assume that 0 < J(ij) for all bonds (ij). Also assume that there
are constants 0 < M1, 0 < M2 such that J(ij) < M1 for y and z bonds (ij) and M2 < Jx. Then for
M1/M2 sufficiently small, the ground state of Hamiltonian (8.2) is vortex-free.

Remark. We believe that in Proposition 11 one can choose M1/M2 sufficiently small, uniformly
in N. Establishing such a result about the boundedness of the magnitude of differences of eigenvalues
of H requires detailed analysis of the local nature of the perturbation. One needs to estimate non-
perturbatively the error in the low-energy perturbation analysis, within a small region of couplings
bounded by M1/M2, uniformly in N. Cluster expansions have been used to do this, both in field
theory15 and in lattice systems. For the latter a framework is given in Refs. 4 and 5 and several
related papers. Working out the details to bound the energy differences uniformly in N for the ladder
Hamiltonian H remains an interesting project.

Proof. First we establish the notation we use. The ground-state eigenspaceP0 of the Hamiltonian
H0 has 22N + 1 ground states, which we label by the eigenvalues of σ x

j , for j = 1, . . . , 4N, with the
constraint σ x

i σ x
j = +1 for all bonds (ij)x. We use m to denote the set of eigenvalues of σ x

j for j = 1,
. . . , 4N that satisfy the constraint. Let P⊥

0 = 1 − P0. Note that B(∂pn) commutes with H0 and thus
with P0. Decompose the perturbation V in two parts, V = Vz + Vy with

Vz =
2N∑

j=1

V j
z = −

2N∑

j=1

J(2 j−1, 2 j) σ
z
2 j−1σ

z
2 j , (8.4)

and

Vy =
2N−1∑

j=1

V j
y = −

2N−1∑

j=1

J(2 j−1, 2 j+2)σ
y

2 j−1σ
y

2 j+2. (8.5)
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The first-order effective Hamiltonian. The first-order effective Hamiltonian is

P0 H (1)
eff P0 = P0 V P0 = 0. (8.6)

The second-order effective Hamiltonian. The second-order effective Hamiltonian has matrix
elements

(P0 H (2)
eff P0)m,m ′ = 1

2

∑

l

Vm,l Vl,m ′

[
1

Em − El
+ 1

Em ′ − El

]
, (8.7)

where l labels eigenstates in P⊥
0 . Here Vm,l , and El are the corresponding matrix elements of V and

H0. As P0 V z
j V z

j ′ P0 = 0, P0 V y
j V y

j ′ P0 = 0 for j ̸= j′, and P0 V z
j V y

j ′ P0 = 0 for all j and j′, so one
obtains

P0 H (2)
eff P0

= − 1
4Jx

⎛

⎝
2N−1∑

j=1

J 2
(2 j−1, 2 j+2) +

2N∑

j=1

J 2
(2 j−1, 2 j)

+ J 2
(1, 4) + J 2

(4N−3, 4N ) + J 2
(1, 2) + J 2

(4N−1, 4N )

⎞

⎠P0.

This Hamiltonian does not involve the σ ’s, so it does not introduce any splitting of the different
vortex configurations.

The third-order effective Hamiltonian. The third-order effective Hamiltonian has matrix
elements

(P0 H (3)
eff P0)m,m ′

= −1
2

∑

l,m ′′

[
Vm,l Vl,m ′′ Vm ′′,m ′

(Em ′ − El)(Em ′′ − El)
+ Vm,m ′′ Vm ′′,l Vl,m ′

(Em − El)(Em ′′ − El)

]
(8.8)

+1
2

∑

l,l ′
Vm,l Vl,l ′ Vl ′,m ′

[
1

(Em − El)(Em − El ′ )
+ 1

(Em ′ − El)(Em ′ − El ′)

]
.

We claim this simplifies to

P0 H (3)
eff P0 = −

2N−2∑

k=2

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2)

8J 2
x

B(∂pk)P0

− J(1, 2) J(1, 4) J(3, 4)

2J 2
x

B(∂p1)P0

− J(4N−3, 4N−2) J(4N−3, 4N ) J(4N−1, 4N )

2J 2
x

B(∂p2N−1)P0. (8.9)

The minimal energy configuration for the Hamiltonian (8.9) therefore occurs in the case that all
B(∂pk) = +1. The single sum over k reflects the extensive nature of the eigenvalues in perturbation
theory, see, for example, Ref. 2. The splitting of the degenerate ground states occurs in case a single
vortex B(∂pk) = −1. This raises the energy of such a state by the quantity

δE =

⎧
⎪⎪⎨

⎪⎪⎩

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2)

4J 2
x

, for k = 2, . . . , 2N − 2
J(1, 2) J(1, 4) J(3, 4)

J 2
x

, for k = 1
J(4N−3, 4N−2) J(4N−3, 4N ) J(4N−1, 4N )

J 2
x

, for k = 2N − 1

. (8.10)

Which plaquette pk gives rise to the minimal energy shift depends upon the choice of the coupling
constants J(ij). In every case, the energy shift is positive as long as J(ij) > 0. For given M1 and M2,
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the energy shifts δE due to a single vortex on one plaquette—as given by third-order perturbation
theory—are bounded away from zero, and also from above, uniformly in N.

We justify the expression (8.9) as follows. The first sum in (8.8) vanishes because P0VP0 = 0.
The perturbation V j

z contains the product σ z
2 j−1σ

z
2 j and V j

y contains the product σ
y

2 j−1σ
y

2 j+2, so the
only possible third-order terms have the form Vz Vy Vz , Vz Vz Vy , or Vy Vz Vz , where

Vz Vy Vz = −
∑

j,k,l

J(2 j−1, 2 j) J(2k−1, 2k+2) J(2l−1, 2l) σ
z
2 j−1σ

z
2 j σ

y
2k−1σ

y
2k+2 σ z

2l−1σ
z
2l ,

etc. There are only two possible choices of indices such that P0 Vz Vy Vz P0 does not vanish, namely
j = k, l = k + 1, and l = k, j = k + 1. One thus obtains

P0 Vz Vy Vz P0

= −2
∑

k

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2)P0 σ x
2k−1 σ z

2kσ
z
2k+1σ

x
2k+2 P0

= 2
∑

k

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2) B(∂pk)P0. (8.11)

Here we use P0 σ z
2kσ

z
2k+1 P0 = −P0 σ

y
2kσ

y
2k+1 P0 and the definition of B(∂pk) in (3.2). Similarly

P0 Vz Vz Vy P0

= 2
∑

k

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2) P0σ
x
2k−1σ

z
2kσ

z
2k+1σ

x
2k+2P0

= −2
∑

k

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2) B(∂pk)P0. (8.12)

The terms in (8.11) and (8.12) that do not contain the boundary plaquettes B(∂p1) and
B(∂p2N−1) cancel identically; they have the same energy denominators and opposite signs.
Finally,

P0Vy Vz Vz P0

= 2
∑

k

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2) P0σ
x
2k−1σ

z
2kσ

z
2k+1σ

x
2k+2 P0

= −2
∑

k

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2) B(∂pk)P0. (8.13)

Therefore, the contribution to P0 H (3)
eff P0 that does not involve the boundary plaquettes p1 and p2N−1

is

−
2N−2∑

k=2

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2)

8J 2
x

B(∂pk)P0.

The situation is different for terms entering in the perturbations Vz Vy Vz , Vz Vz Vy , and Vy Vz Vz

and involving plaquettes p1 and p2N−1. The reason is that σ 1 and σ 4N do not enter into H0. Taking
this into account, the coefficients of the boundary terms differ. However, they are still negative and
the third-order effective Hamiltonian is (8.9).

The fact that the perturbation theory result applies in a region of couplings for small M1/M2

is a consequence of the analyticity of the eigenvalues, see Ref. 20 and Secs. II.1.3 and II.1.4
of Ref. 21. !

Proposition 12 (Closed ladder with N > 2). Under the hypothesis of Proposition 11, the ground
state of the Hamiltonian H in (8.2) with closed boundaries is vortex-free on each plaquette p1, . . . ,
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p2N. The effective Hamiltonian to third order is

P0 H!3
eff P0 = H0P0 − 1

4Jx

⎛

⎝
2N−1∑

j=1

J 2
(2 j−1, 2 j+2) +

2N∑

j=1

J 2
(2 j−1, 2 j) + J 2

(2, 4N−1)

⎞

⎠ P0

−
2N−1∑

k=1

J(2k−1, 2k) J(2k−1, 2k+2) J(2k+1, 2k+2)

8J 2
x

B(∂pk)P0. (8.14)

Remark. The perturbative expansion up to third order will not give a splitting in energy due to
a vortex on the big loop (the shortest loop around the top or bottom of the closed ladder). This will
occur only in perturbation theory of order O(N); a single vortex in this loop gives an energy shift
that is exponentially small in N.

Proof. The Hamiltonian H in (8.2) possesses two additional bonds (2, 4N − 1) and (1, 4N) that
do not occur in the open ladder. They yield interaction terms

H closed
x = −Jx σ x

1 σ x
4N and V closed

y = −J(2, 4N−1) σ
y

2 σ
y

4N−1. (8.15)

We incorporate H closed
x in the unperturbed Hamiltonian H0 and V closed

y in the perturbation Vy . Define

V 2N
y = V closed

y , so we have Vy =
∑2N

j=1 V j
y . We now derive the first order, second order, and third

order effective Hamiltonians.

The first-order effective Hamiltonian. As in the proof of Proposition 11, the first-order
effective Hamiltonian vanishes.

The second-order effective Hamiltonian. Also as in the proof of Proposition 11, the second-
order is given in (8.7). For ladders with N > 2 the only second order terms that do not vanish are
P0

(
V j

z
)2P0 and P0

(
V j

y
)2P0. The ladder being closed, all the energy denominators in (8.7) are the

same. One thus obtains the second-order term.

The third-order effective Hamiltonian. As for the open ladder, the third-order effective
Hamiltonian is given in (8.8). For the same reason as in the case of the open ladder, the first sum in
(8.8) vanishes. Again the relevant perturbations are P0Vz Vy VzP0, P0Vz Vz VyP0, P0Vy Vz VzP0. The
cancelation of the terms (8.11) and (8.12) of the first two perturbations for the open ladder also
takes place for the closed ladder. Furthermore, since the ladder is closed, the energy denominators
appearing in P0Vz Vy VzP0, P0Vz Vz VyP0, P0Vy Vz VzP0 are all the same and no “boundary” terms
appear in the third-order effective Hamiltonian. !

IX. CONJECTURE

Based on the numerical calculations that we performed in Sec. VII and the perturbation calcu-
lations we performed in Sec. VIII, we formulate the following conjecture for ladder Hamiltonians:

Conjecture 13. For a closed ladder, the ground state energies of H in (3.1) and H̃ in (4.4)
coincide. For a closed or open ladder with the coupling constants J(ij) all positive or all negative,
the ground states of H and H̃ are vortex-free.

It is known that one has qualitatively different behavior in two-dimensional spin systems with
trivalent interactions.36
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11 J. Fröhlich, B. Simon, and T. Spencer, “Infrared bounds, phase transitions, and continuous symmetry breaking,” Commun.
Math. Phys. 50, 79–85 (1976).
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